Fourth Annual Conference on Carbon Capture & Sequestration Geologic – Frio Brine Field Project (1) # Flow Modeling for the Frio Brine Pilot Christine Doughty, Karsten Pruess, Sally M. Benson* Earth Sciences Division Lawrence Berkeley National Laboratory ### Outline - Purposes of modeling - Model development - Model applications - Conclusions and future directions # Purposes of Modeling - Planning to help design Frio brine pilot - Predictions to assess state of understanding - Calibration to improve understanding of the multi-phase, multi-component flow processes involved in geologic sequestration of CO₂ # **Experiment Design Issues** | Requirement | Controlling factors | Decision | | | | | |--|---|---|--|--|--|--| | Pressure increase must be within regulatory limits | permeability outer boundary conditions CO₂ injection rate | • ΔP should be okay for highest planned CO_2 injection rate | | | | | | CO ₂ must arrive at observation well | thickness of injection interval well separation amount of CO₂ injected | •Drill new injection well closer to observation well | | | | | | Duration of field test must be affordable | thickness of injection interval well separation CO₂ injection rate | •Inject into C sand above thin marker bed •Highest CO ₂ injection rate | | | | | | CO ₂ must be monitored in subsurface | amount of CO₂ injected in situ phase/component conditions | •Downhole P, T •VSP •Cross-well seismic | | | | | ### Outline - Purposes of modeling - Model development - Numerical simulator TOUGH2 - Key physical processes - Incremental model development - Model applications - Conclusions and future directions ### Numerical Simulator TOUGH2 - General-purpose simulator for flow and transport through porous or fractured rock - multi-component - multi-phase - heat flow - tracer transport - Equation of state: CO₂, H₂O, NaCl, ideal tracer - Accurate phase partitioning and thermophysical properties - CO₂: liquid, gas, supercritical, dissolved - H_2O : liquid, gas - NaCl: dissolved, precipitate - Integral-finite difference method for flexible space discretization - Fully implicit, fully coupled time-stepping # Key Physical Processes • Flow equations: multi-phase Darcy's Law for phase β $$q_{\beta} = -K_{\beta} \left(\nabla P_{\beta} - \rho_{\beta} g \right) \qquad K_{\beta} = \frac{k k_{r\beta} \rho_{\beta}}{\mu_{\beta}}$$ - Mobility K_{β} includes intrinsic permeability k, relative permeability $k_{r\beta}$, density ρ_{β} , and viscosity μ_{β} - Driving forces - Pressure gradient (including capillary pressure P_{cap}) - Gravity - Key properties of supercritical CO₂ at Frio conditions (150 bars, 55°C) - Low ρ and μ compared to surrounding brine - $-k_{r\beta}$ and P_{cap} control phase interference between CO₂ and brine # Plan View and Model Boundaries # 3-D Grid Design # Property Assignment # Well Logs and Core Analysis Data provided by Shinichi Sakurai, TBEG ### Outline - Purposes of modeling - Model development - Model applications - Estimation of relative permeability curves - Conclusions and future directions # Relative Permeability Function Sticky or Slippery Plume? # Modeled CO₂ Distribution #### Slippery plume - arrival 3 days #### Sticky plume - arrival 5 days ### Site Characterization #### Tracer-Test Arrival for Two C Sand Thicknesses Data provided by Barry Freifeld and Rob Trautz, LBNL # Use Tracer-Test to Predict CO₂ Arrival | Feature | Tracer Test | CO ₂ Injection | Impact on CO ₂ Arrival Time | |-----------------------------|--------------------------|------------------------------|--| | Flow field | Doublet | Single well | 3 times slower | | Phase conditions | Single-phase | Two-phase | Faster | | Density contrast | None | 1.5 | Faster | | Viscosity contrast | None | 12 | Faster | | Injection rate | 50 gpm | 40 gpm | 20% slower | | Density in situ | 1060 kg/m^3 | \sim 700 kg/m ³ | 50% faster | | Arrival at observation well | 9 days
(peak 12 days) | WITHIN TWO
WEEKS??? | | ### Observed Data and Model Predictions Data provided by Barry Freifeld and Rob Trautz, LBNL ### RST – Reservoir Saturation Tool #### **RST** Interpretation Figure provided by Shinichi Sakurai, TBEG RST logging conducted by Schlumberger ### Conclusions and Future Directions - Developing good understanding of physical process involved in CO₂ storage - modeling range of behaviors - comparing to field data - Complex interplay between phase interference and buoyancy flow for CO₂ injection into a high-permeability, steeply dipping sand layer - Prepared to design future tests and actual storage operations - Still to learn - Phase interference at field scale - Upscale from laboratory experiments - Dynamics of trailing edge of CO₂ plume ### Site Characterization ### Well-Test Design and Analysis - •Simulate well-test scenarios to design well-testing to optimize information gained on - flow properties - in situ phase conditions (dissolved or immobile methane) - fault-block boundary conditions - •Simulate actual well-test and compare to observed data - confirms high permeability values of core analysis - suggests nearby small fault may be non-sealing (could enable communication between C and B sands) # Property Assignment # New Injection Well Logs Data provided by Mark Holtz, TBEG # Incremental Model Development | Date | Data incorporated | Model Application | CO ₂ Arrival
Time (days) | |------|---|---|--| | 8/01 | Regional Frio and Anahuac geology
South Liberty oil-field data:
50-year-old well logs, 3D seismic | CO ₂ injection: B sand, wells 150 m apart C sand, wells 30 m apart | 45
2 | | 9/02 | Large S _{gr} from Frio literature | CO ₂ injection | 4 | | 8/03 | More geological structure | CO ₂ injection | 3 - 6 | | 6/04 | New injection well logs | CO ₂ injection | 4 - 7 | | 8/04 | Core analysis | Well test | | | 9/04 | Well test | Tracer test: $t_{peak} = 9 d$ CO_2 injection | 2.7 – 5.0 | | 9/04 | Tracer test | Tracer test: $t_{peak} = 12 d$ CO_2 injection | 3.2 - 6.1 | | 3/05 | CO_2 injection ($t_{bt} = 2.2 \text{ d}$) | Long-term CO ₂ plume evolution | |